INTRODUCTION

This project is to design a vending machine via sequential network implementation. The reason why we have to use sequential network method in this project is that this project requires memory. When a person put money into the machine, the circuit must memorize the amount of money that person put in. The only way to design that circuit is to use sequential network.

In fact, we are going to use ASM—algorithm state machine. After we have ASM, we will use the combinational network to implement the inputs of flip-flops. Reminding that we have to use flip-flops in sequential network designation. Again, we use K-map method to derive functions for the inputs of flip-flops. Now we are going to start the ASM for this project.

REQUIREMENT

The machine accepts the nickel, dime, and quarter. The coke costs 50 cents. It needs only the less, exact, and greater indicators (no changing required). There are two options of the product—soda and coke.

PROCEDURE

The important part of a vending machine is the counter. Unlike the counter that we discuss in previous labs, this one is to count the amount of money inserted in from buyers. In this project, we are only concerned about the combination of nickel, dime, and quarter. That is the probability of the inserted coin is 3. Therefore, we are going to use 3-bit input to represent nickel, dime, or quarter. In purpose of avoiding the glitch and making easier process, we represent the inputs as the following.

Inputs
X1X0

Nickel
00

Dime
01

Quarter
11

d-c term
10

Now we draw the ASM considering the three different inputs. As we can see that the nickel is a critical input because we need to insert ten ones. Whereas we need only to insert five dimes or two quarters in order to get 50 cents credit. The advantage here is a dime is equal to two nickels; a quarter is equal to five nickels. Therefore, we can decode one state (in ASM) is five cents. That is the waiting state is S0; S1 is five cents; S2 is ten cents; S3 is 15 cents and so forth. The following figure is an illustrated ASM.

[image: image1.wmf]

Since we have ASM, we transform it into a table format: state table.

PS

INPUT

OUTPUT

X1X0 = 00
X1X0 = 01
X1X0 = 11
Z

S0
S1
S2
S5
0

S1
S2
S3
S6
0

S2
S3
S4
S7
0

S3
S4
S5
S8
0

S4
S5
S6
S9
0

S5
S6
S7
S10
0

S6
S7
S8
S11
0

S7
S8
S9
S11
0

S8
S9
S10
S11
0

S9
S10
S11
S11
0

S10
S11
S11
S11
1

S11
S11
S11
S11
1

NS

Now we decode the states into binary representation. We have 12 states in total; hence, we have to use 4-bit in binary to represent all of them. We put into a table known as transition table.

PS

INPUT

OUTPUT

Q3Q2Q1Q0
X1X0 = 00
X1X0 = 01
X1X0 =11
Z

0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 1
0

0 0 0 1
0 0 1 0
0 0 1 1
0 1 1 0
0

0 0 1 0
0 0 1 1
0 1 0 0
0 1 1 1
0

0 0 1 1
0 1 0 0
0 1 0 1
1 0 0 0
0

0 1 0 0
0 1 0 1
0 1 1 0
1 0 0 1
0

0 1 0 1
0 1 1 0
0 1 1 1
1 0 1 0
0

0 1 1 0
0 1 1 1
1 0 0 0
1 0 1 1
0

0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 1
0

1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
0

1 0 0 1
1 0 1 0
1 0 1 1
1 0 1 1
0

1 0 1 0
1 0 1 1
1 0 1 1
1 0 1 1
1

1 0 1 1
1 0 1 1
1 0 1 1
1 0 1 1
1

NS

From this table, we now derive function for D input—we use D Flip-Flop to implement this circuit.

[image: image2.wmf]
(D3 = Q3 + Q2Q1Q0 + Q2Q1X0 + Q1Q0X1 + Q2X1

 = {Q3’[Q2Q1(Q0’X0’)’]’(Q1Q0X1)’(Q2X1)’}’

[image: image3.png]
(D2 = Q3’Q2’Q1Q0X1’ + Q2Q1’X1’ + Q2Q0’X0’ + Q3’Q2’Q1X1’X0 + Q3’Q2’Q1’X1 + Q3’Q2’Q0’X1

[image: image4.emf]

(D2 = {{[(Q3’Q2’Q1X1’)’]’(Q0’X0’)’}’{Q2[(Q1’X1’)’(Q0’X0’)’]’}’[Q3’Q2’X1(Q1Q0)’]’}’

(D1 = Q1’Q0 + Q1Q0’X0’ + Q3Q1 + Q1’X1’X0 + Q3X0 + Q2Q1X1 + Q1Q0’X1

[image: image5.emf]

 = {(Q1’Q0)’[Q1Q0’(X1’X0)’]’(Q2Q1X1)’}’+{(Q3Q1)’[Q1’(X1’X0)]’(Q3X0)’}’

(D0 = Q0’X0’ + Q3Q1 + Q0X1’X0 + Q0’X1 + Q3X1 + Q2Q1X1

 = {(Q0’X0)’(Q3Q1)’[Q0(X1’X0)]’}’ + [(Q0’X1)’(Q3X1)’(Q2Q1X1)’]’

Now we rewrite all of D-inputs equation together.

D3 = {Q3’[Q2Q1(Q0’X0’)’]’(Q1Q0X1)’(Q2X1)’}’

D2 =

{{[(Q3’Q2’Q1X1’)’]’(Q0’X0’)’}’{Q2[(Q1’X1’)’(Q0’X0’)’]’}’[Q3’Q2’X1(Q1Q0)’]’}’

D1 = {(Q1’Q0)’[Q1Q0’(X1’X0)’]’(Q2Q1X1)’}’+{(Q3Q1)’[Q1’(X1’X0)]’(Q3X0)’}’

D0 = {(Q0’X0)’(Q3Q1)’[Q0(X1’X0)]’}’ + [(Q0’X1)’(Q3X1)’(Q2Q1X1)’]’

As long as we have these equations, we can draw the circuit diagram. Because the circuit maybe complicated and long, we split it into two or three parts. We are going to label all necessary steps so that you can keep track the whole circuit easily. One more thing we want to notice that the circuit is positive logic.

� EMBED PBrush ���

� EMBED Word.Picture.8 ���

[image: image6.wmf][image: image7.emf]

_987717494

_987788971.doc

