INTRODUCTION

We are going to study the implementation of a BCD (binary coded decimal) counter circuit with J-K flip-flops, and its operation. This lab is more advanced in sequential network design. In reality, we must perform the number in decimal digit; however, it is necessary to work with binary number in machine. Therefore, we decode the decimal digit using binary.

PROCEDURE

First of all, we have to decode the number into states. We have to count 0-9; therefore, the binary number should have four digits. We decode the most significant bit as D, and the least one as A. Its state decoding is DCBA. We now start the counting as the below figure.

Previous State
Next State

d c b a

0 0 0 0
DCBA

0 0 0 1

0 0 0 1
0 0 1 0

0 0 1 0
0 0 1 1

0 0 1 1
0 1 0 0

0 1 0 0
0 1 0 1

0 1 0 1
0 1 1 0

0 1 1 0
0 1 1 1

0 1 1 1
1 0 0 0

1 0 0 0
1 0 0 1

1 0 0 1
0 0 0 0

According to the J-K flip-flops configuration, we have Preset (PRE) and Clear/Reset (CLR) inputs. The above table is for the case of both PRE and CLR are high—1. We don’t have to care the J-K inputs for other cases of PRE and CLR because the next state is high—1 when PRE is low—0, and low when CLR is low—0. We now derive the function for the inputs J and K.

This is the configuration of J-K flip-flops according to Q(t+1) = Q(t)K’ + Q’(t)J

Q(t)
Q(t+1)
J(t)
K(t)

0
0
0
--

0
1
1
--

1
0
--
1

1
1
--
0

Since we have the J-K configuration, we can obtain the K-map with data based on the state stable. Because we have four digits in BCD, we have four K-maps associated with Kd, Jd, Kc, Jc, Kb, Jb and Ka, Ja.

K-map for Kd:

BA

00
01
11
10

DC
00
--
--
--
--

01
--
--
--
--

11
--
--
--
--

10
0
1
--
--

(Kd = A

K-map for Jd:

BA

00
01
11
10

DC
00
0
0
0
0

01
0
0
1
0

11
--
--
--
--

10
--
--
--
--

(Jd = ABC

K-map for Kc:

BA

00
01
11
10

DC
00
--
--
--
--

01
0
0
1
0

11
--
--
--
--

10
--
--
--
--

(Kc = AB

K-map for Jc:

BA

00
01
11
10

DC
00
0
0
1
0

01
--
--
--
--

11
--
--
--
--

10
0
0
--
--

(Jc = AB

K-map for Kb:

BA

00
01
11
10

DC
00
--
--
1
0

01
--
--
1
0

11
--
--
--
--

10
--
--
--
--

(Kb = A

K-map for Jb:

BA

00
01
11
10

DC
00
0
1
--
--

01
0
1
--
--

11
--
--
--
--

10
0
0
--
--

(Jb = AD’

K-map for Ka:

BA

00
01
11
10

DC
00
--
1
1
--

01
--
1
1
--

11
--
--
--
--

10
--
1
--
--

(Ka = 1

K-map for Ja:

BA

00
01
11
10

DC
00
1
--
--
1

01
1
--
--
1

11
--
--
--
--

10
1
--
--
--

(Ja = 1

After we derive all the needed equations, we now connect the circuit using 74LS76A (Dual J-K flip-flops), NAND gate 74LS00, 7-segment decoder driver 74LS47, and one 7-segment display. For the clock inputs, we are going to wire all clock-inputs into the clock that we learned at the beginning of sequential design (we have a clock circuit in the lab manual.) For the CLR and PRE inputs, we are going to use a debounced switch that we discussed in the lecture.

Moreover, we have to design a little bit of the CLR and PRE inputs because we don’t want the unexpected numbers come out when we preset of clear/reset. The problem depends on the preset input. If we just wire the preset without the derivation, the result is number 15 when we preset—all digits are 1. However, it is not difficult to control that part. We only need two NAND gates to design it; see circuit diagram.

The circuit diagram is enclosed at the back. We don’t include the 7-segment decoder driver in this diagram because the Logic Work that we use doesn’t agree with the real cheep (76LS47) about the pin—it confuses us. In addition, it is very straight forward, so I don’t think it is necessary to include it on.

CONCLUSION

After this lab, we learn how the J-K flip-flop and the BCD counter work. We observe that when we use J-K flip-flop, the circuit seems to be simplified. We also feel more comfortable in sequential network design using flip-flops.

[image: image1.png]

