INTRODUCTION

In this lab, we are going to build a circuit in which we calculate the sum and difference of two 2-bit numbers. Moreover, we have to design a select and a MUX network. The select has to be able to transfer either the sum or the difference. The MUX network is to display the result (sum or difference) into a 7-segments display. For the full adder, full subtracter, and result selecter, we have to use NAND, NOR, AND, OR, XOR, and NOT gates. For the MUX network, we will use the MUX 153. In case of subtract circuit, we assume there is no negative result. In other words, subtract number is assumed to be greater than the other is.

PROCEDURE

 FULL ADDER

We are now going to discuss the full adder in binary number. It works as the way decimal does. We take the very least significant digits of two numbers and add them together. There is carry numbers; therefore, we take the carrier and add it with the next least significant digits together. And we repeat the process for the next digits. In a full adder, there should be a carry-in component. The result also should have a carry-out component--the most significant digit of the sum. This is the truth table for addition operation. Let's assume the two 2-bit numbers are Y1Y0 and X1X0. The carry is C0, C1, C2; consequently, the sum is C2A1A0.

In this truth table, C0, C1, Y0, X0 are carry in, carry out, least significant of two 2-bit numbers respectively. Consequently, A0 is the least significant digit of the sum.

C0
Y0
X0
A0
C1

0

0

0

0

1

1

1

1
0

0

1

1

0

0

1

1
0

1

0

1

0

1

0

1
0

1

1

0

1

0

0

1
0

0

0

1

0

1

1

1

The result in this truth table is from the addition operation. We then go to construct a K-map.

Before doing the K-map, we easily see that: A0 = C0 ((Y0 (X0). But for C1 we hare to use K-map.

Y0X0
00
01
11
10

CO
0

1

1

1
 1
1

Based on the K-map. We derive switching function for C1 as:

C1 = Y0X0 + C0X0 + C0Y0

C1 = Y0X0 + C0 (Y0 (X0)

Now we are going to construct a truth table for the second digits (the most significant digits). Like the above table, the variables are Y1, X1, and C1. And A1 is the sum digit; C2 is a carry out--the most significant digit of the sum.

[image: image1.png][image: image2.png]

C1
Y1
X1
A1
C2

0

0

0

0

1

1

1

1
0

0

1

1

0

0

1

1
0

1

0

1

0

1

0

1
0

1

1

0

1

0

0

1
0

0

0

1

0

1

1

1

We can see that it is similar to the above table. Therefore, we can obtain a function for S1 as:

 A1 = C1 ((Y1 (X1)

Because of the K-map for C2 is similar to C1. The function for C2 is:

C2 = Y1X1 + C1X1 + C1Y1

C2 = Y1X1 + C1 (Y1 (X1)

The circuit diagram for FULL ADDER is at the back page.

 FULL SUBTRACTER

Unlike the Full Adder, Full Subtracter is more difficult. We have to deal with the borrowing. In the subtract operation, we have to concern about borrowing. In addition, when we borrow a digit, we have to give it back via subtraction. For example, let's subtract 01 from 10. Because 0 can't subtract 1, we have to borrow 1 from the next digit. And now we subtract 1 from 10, result is 01. We next subtract 0 from 1; however, we have to give 1 back because we borrow. Then now we subtract 0 from (1 - 1), result is 0. That's how we perform a subtraction. We notify one thing that we somehow don't use the borrowing digit, then we carry it to the next digit as well. The reason why it happens because in logic we deal with the algorithm--we somehow use the borrowing digit; somehow we don't. For this lab, the subtraction happens only when a number subtracts the other less or equal one. For instance, Y1Y0 - X1X0 happens only if Y1Y0 is greater or equal X1X0.

Here is the truth table for the subtraction of Y1Y0 to X1X0. B0 is borrow in; B1 is borrow out. D1D0 is the difference.

B0
Y0
X0
D0
B1

0

0

0

0

1

1

1

1
0

0

1

1

0

0

1

1
0

1

0

1

0

1

0

1
0

-

1

0

0

1

1

0
0

0

0

0

1

0

1

1

We now construct a K-map for D0 and B1:

Y0X0
00
01
11
10

BO
0

_

1

1

1

1

Since we have don't care quantity. We can assume it as 1 in this case to make better groups. Then D0 is:

D0 = Y0'X0 + YOX0'

D0 = Y0 (X0

The K-map for B1:

Y0X0
00
01
11
10

B0
0

1
1

 1
1

After doing the group, we obtain a function for B1 as:

B1 = B0Y0 + B0X0'

B1 = B0 (Y0 + X0)

We now perform the subtraction for the next digit. Remember that B1 is assigned to be as carry. And we also have to pay for the rent (borrow, I mean.) At this operation, we don't have the borrow because we are working with the most significant digits of two 2-bit numbers. If we borrow, there is no such a way to pay back. And because of subtraction of 2-bit number to other one, there is two digits maximum for the difference--the output. In other words, there is no carry transition.

The truth table second digit:

B1
B0
Y1
X1
D1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1
0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1
0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1
0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1
0

-

1

0

-

-

0

-

-

-

-

-

0

-

1

0

K-map for D1:

Y1X1
00
01
11
10

B1B0
00

_

1

01
_
_
_

11

_

1

10
_
_
_
1

We can see that there is no convenience for using the dc set. Function for D1 is predicted as

D1 = B1Y1A1' + B0'Y1X1'

D1 = Y1X1' (B1 + B0')

The circuit diagram for Full Subtracter is at the back page.

 RESULT SELECTER (MUX 2-1)

After we have done Full Adder and Full Subtracter, we are going to build a selecter to select the result from whether Full Adder or Full Subtracter. The reason why we have to build a result selecter is we have limited number of gates. If we display both results, we have to use a lot of gates. Since we have selecter, we save more gates.

Building a selecter is not difficult. It works as a mux. We can build it by applying the equivalence of a mux using AND, OR, NOT gates. Here are the mux we will use in this lab.

[image: image3.png][image: image4.png][image: image5.png]

The equivalence for the MUX selecter is

M0 = S'D0 + SA0

M1 = S'D1 + SA1

M2 = SC2

Where S is the select variable; D0, A0, D1, A1, and C2 are from Full Adder and Full Substracter.

M0, M1, and M2 are output of this Select Network.

The circuit diagram is at the back of the page. When we look at the circuit diagram, it is easily to understand.

 MUX NETWORK TO 7-SEGMENTS DISPLAY

After we have the result from the 2-1 MUX Selecter. We take them as inputs of this MUX Network. This network is similar to the network that we did in lab D. But in this lab, we don't care to display number 7. Therefore, we have some dc terms in the truth table. It helps us to reduce the circuit. Here is the truth table for MUX network 7-segment display.

 Inputs
 Outputs

M2
M1
M0
a
b
c
d
e
f
g

0
0
0
0
0
0
0
0
0
1

0
0
1
1
0
0
1
1
1
1

0
1
0
0
0
1
0
0
1
0

0
1
1
0
0
0
0
1
1
0

1
0
0
1
0
0
1
1
0
0

1
0
1
0
1
0
0
1
0
0

1
1
0
1
1
0
0
0
0
0

1
1
1
-
-
-
-
-
-
-

If I am going to use 74LS153 chip, then I don’t need the K-map. I can just look at the operation of the 74LS153 chip to wire the circuit. Now, I can see how convenient when I use this chip. However, I only have two 74LS153 chips: totally 4 outputs. Then I have to decide which four of seven above outputs to wire on this chip. So I decide the four outputs: a, d, e, and f. The rests of them are wire by NAND gates. For output b, c and g, we have to use K-map to derive their switching function. For c, it is easily to obtain a function.

c = M2’M1M0’

For the function of b and g, we have to use K-map.

The K-map for b:

 M1M0

M2
00
01
11
10

0

1

1
_
1

The function for b obtained from K-map is:

B = M2M0 + M2M1

B = [M2' + (M1 + M0)']'

The K-map for b:

M1M0

M2
00
01
11
10

0
1
1

1

_

The switching function for g is:

g = M2'M1'

The circuit diagram is at the back of the page.

CONCLUSION

After this lab, we know how to design Full Adder and Subtracter. We also explore how a MUX works because we did design it. This lab is very interesting to us. Since this point, we now feel comfortable to design a circuit.

� EMBED Word.Picture.8 ���

_987702701.doc
[image: image1.png]

